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Abstract -Studies of the flow of a hot electrically conducting fluid in a rectangular horizontal channel 
with transverse magnetic field and significant heat transfer by thermal radiation are extended to take 
particular account of two effects. In the first of these a power law dependence of the absorption 
coefficient upon the temperature is taken into consideration. Comparison with the results for constant 
absorption coefficient shows the consequences to be not particularly marked. The second effect examined 
is that of the influence of buoyancy forces and convective heat transfer when the channel walls are 
differentially and non-uniformly heated. In this case there is a significant contribution to the field profiles 
which are considerably distorted from those when the wall temperatures are uniform. 

Throughout the investigations, the gas is taken to have general opacity for radiative transfer and the 
walls are of arbitrary electrical conductivity and emissivity. Molecular heat conducfion, viscosity and 
ohmic dissipation are all taken into account. A few exact solutions are obtained but in general the 

governing differential equations are integrated numerically and the results presented graphically. 

NOMENCLATURE 

dimensionless magnetic field ; 
velocity of light; 

specific heats ; 
wall thickness : 
gravitational acceleration ; 
channel semi-width ; 
coefficient of thermal conductivity; 
indices [see equation (3)] ; 
pressure ; 
radiative flux ; 
velocity ; 
dimensionless velocity; 
coordinates; 
Boltzmann number; 
applied magnetic field ; 
magnetic field component; 
electric field number; 
electric field ; 
Eckert number; 
defined PrEc: 

Grashof number; 
current number; 
current density; 
wall conductivity number; 
absorption coefficient parameter [see 
equation (3)] ; 
Hartmann number; 
defined Re,‘Bo; 
Prandtl number; 
dimensionless radiative flux ; 
Reynolds number; 
magnetic Reynolds number; 

T*, T, r. temperatures [see equation (I)] ; 
u, mean fluid velocity. 

Greek symbols 

2 
absorption coefficient ; 
coefficient of thermal expansion ; 

.1 /9 specific heat ratio ; 
6 wall emissivity ; 

P> density; 

‘I, dimensionless y coordinate; 

0, electrical conductivity; 

0, Stefan’s constant ; 
0,8,0, dimensionless temperatures 

[see equation (28)] ; 
7, scale factor [see equation (1 )] ; 

Pa coefficient of viscosity; 

/J er permeability; 

Q4 Bouguer number; 

1, dimensionless radiative energy density; 

z., radiative energy density. 

Subscripts 

1, value at lower wall ; 
2, value at upper wall ; 
s,y,z, vector components. 

Superscripts 

1, part of variable independent of Y [see 
equations (13)-(15)]; 

2, part of variable dependent on x [see 
equations (13)-( 15)]. 

1. INTRODUCTION 

SIMPLE Hartmann flow of an electrically conducting 
incompressible fluid in a rectangular channel with 
downstream pressure gradient and transverse ap- 
plied magnetic field is a well understood basic 
configuration. However, a considerable number of 
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physical attributes of a realistic Huid which could 
well be significant are omitted from this model. 
Among these are effects of thermal conduction and 
convection due to buoyancy. In addition, when the 

temperature is high, the importance of radiative heat 
transfer is quite overlooked. 

In recent years a number of studies have been 
carried out specifically concerned with elucidating 
the influence of the various mechanisms of heat 
transfer in channel flow of an electrically conducting 
tluid in the presence of a magnetic field. These 
investigations have application in problems as- 

sociated with the cooling of nuclear reactors as well 
as in more wide ranging areas involving the use of 
magnetohydrodynamic pumps and generators. Ad- 
ditionally they also serve to enhance our broad 
understanding of motions involving plasmas and 
conducting fluids generally. 

The fundamental effects of convective heat transfer 
in magnetohydrodynamics have been analysed by 
Siegel [I] and Alpher [2], among others. For a 
vertical channel with constant wail temperatures 
Gershuni and Zhukhovitsky [3] examined the 
problem whilst Yu [4] considered the same con- 
figuration but with walls of linearly varying tempera- 

ture. Particular emphasis was placed upon the effect 
of electrical conductivity of the walls by Chang and 
Yen [5]. The intluence of buoyancy forces in a 
horizontal channel with non-conducting walls has 
been studied by Gill and Casal [6] and Gupta [7]. 
More recently Jana [8] has presented an exact 
solution for the free and forced convective flow 

between two horizontal finitely conducting walls 
with linear temperature variation. The effects of 

convection have also been investigated by Soundal- 

gekar [9]. 
All the above analyses however take no account of 

any possible effects of radiative heat transfer. Some 
study of the interaction in the absence of elec- 
tromagnetic effects has been made by Greif, Habib 
and Lin [IO] and Viskanta [l I] has examined some 
aspects of the influence of radiation and magnetic 

field on the Row in a horizontal channel. Gupta and 
Gupta [12] have discussed the effect of radiation on 
the convection in an electrically conducting fluid in a 
vertical channel. However in all these investigations, 
in order to simplify the analyses and generate exact 
solutions, the optically thin limit has been employed 

for radiative transfer with consequent loss of gener- 
ality. An earlier paper by one of the present authors, 
Helliwell [I31 has examined the effect of radiation 
upon simple Hartmann flow under conditions of 
general opacity using the so-called differential approx- 
imation for radiative transfer and, in a sequel, 
Helliwell [14] has gone on to introduce the further 
effect of thermal conduction. The purpose of the 
present paper is to extend this previous study of the 
transverse variation of the flow profiles so as to take 
account of the dependence of the absorption coef- 
ficient upon the temperature and density and to 
generalise the configuration to the case when the 

horizontal channel walls, having different linear axial 
temperature variations, are of arbitrary electrical 
conductivities. The effects of buoyancy are also 
introduced. 

2. THE MODEL AND GOVERNING EQUATIONS 

Consider a long channel of great width and of 
height 2h lying between two horizontal walls of 
arbitrary electrical conductivity. Take an origin of 

coordinates in some appropriate cross-section so 
that the walls become the planes y = k/i and the s 
axis lies parallel to the direction of tlow of an 
electrically conducting fluid which fills the channel. 
The temperatures T* of the walls are taken to vary 
linearly with x so that 

T4 _ 
T*=T::=T,+TT,, 

f7 
II I 

T.Y _ 
T* = T;” = T, + k T,, 

where T,, T,, 7,, i=l are constants and T is a suitable 
scale factor. Throughout this paper suffices (I) and 
(2) refer to values at the lower and upper wall 
respectively. The bounds of the channel normal to 
the : axis are assumed to be perfectly conducting 
electrodes set infinitely far apart so that any 
dependence upon the : coordinate vanishes from the 
equations. The electrical conductivities of the fluid 
and walls are all supposed constant and are denoted 
respectively by (T, cr, and oz. An externally applied 
magnetic field B, is applied uniformly across the 
channel in the direction of the J axis. 

In order to ease somewhat the mathematical 
analysis without, it is hoped, much loss of reality the 
Boussinesq approximation to the equation of state is 
introduced, as in most previous studies. Thus the 
fluid is supposed incompressible so far as direct 
contributions from the density ~1 to the conservation 
equations are concerned apart from that arising from 
the buoyancy term in the equation of momentum. 
We write 

/’ = 1’1 
I 

l-p(T*-T) 
r, ! 

1 3 (2) 

where /j is a coefficient of thermal expansion. A 
further fairly gross assumption is made that the 
coefficients of viscosity and thermal conductivity p 
and k respectively are constants. However the 
absorption coefficient c( for a grey gas at fairly high 
temperatures is known to be a more rapidly varying 
function of the temperature than either p or k, and 
following Armstrong et ul. [ 151 may be written in the 
form 

r = K,p’“T*“. 13) 

For instance when p = 1.3 x 10-3g$m3 and T* 
E 10°K one has tn = 1, II = 5. The variation of 
density with temperature is also retained in this form 
for c(. One of the objects of the present paper is to 
examine the consequence of taking this variable form 
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for CI as compared with the commonly used constant 
coefficienf. 

For fully developed laminar flow the continuity 
equation is identically satisfied with the only non- 
zero velocity component horizontal and a function of 
y alone. This is written u = u(y). Apart from cases 
when the gas has an extremely high temperature 
(> lo5 K) it is known that no contribution arises 

from radiative effects in the equation of conservation 
of momentum, and only that from radiative flux in 
the equation of conservation of energy; see for 
instance Vincenti and Kruger [16]. The equation of 
motion is therefore unchanged from that of con- 
ventional magnetohydrodynamics, which together 
with the electromagnetic equations may be found in 
standard texts, as for example Shercliff [17]. From 
these it follows that the electric current density has a 
single component J = J(y) in a direction parallel to 
the z axis. A component B, = B,(y) of magnetic field 
is induced parallel to the flow whilst the transverse 
component remains parallel to the y axis and has 
constant magnitude B,. Furthermore the electric 

field possesses a single constant component E, 
parallel to the z axis. This set of equations thus 

reduces to 

(4) 
Zp d2u 
- = P dr2 - B,J, ax _, 

- 1 dB, 
J = -T = u(E,+uB,), (6) 

PL, ’ 

where p is the pressure, p, is the permeability and g 
is the gravitational acceleration. Elimination of p and 
J from these equations following the use of equation 
(2) leads to the relationship 

4, d2Bx ___ +yd’u=p,gLK. 
p(e d$ dy3 T, dx 

(7) 

Hence, since the left hand side is a function of y 
alone, it follows that the most general possible form 
for T* is linear in X, consistent with the form (1) for 
the temperatures of the walls. We write 

T.X _ 

T* = T(J) + h T(y) 

Taking account of the above forms and introduc- 
ing the contributions from the radiative flux q (of 
which the component in the -_ direction is identically 

zero, the others yX,qY being functions of both .Y and 
y), the equation of energy may be written 

c,.u _ 
-PqtT 

aq, dqy J2 

where c,. is the specific heat at constant volume. 
To close the system of equations it is necessary to 

introduce the equations of radiative heat transfer. In 
its exact form it is well known that this gives rise to a 

coupled system of integro-differential relationships, 
and to circumvent the consequent formidable 
analytical difficulties various approximations have 
been introduced. Here we employ the so-called 
differential approximation, see Vincenti and Kruger 

[16], which replaces the exact equations by a system 
of approximating differential equations. For a two- 
dimensional configuration these may be written 

& + dq, + % = 4&T*4, 
ax ay 

(10) 

az 
c-+faq, =o, 

ax (11) 

where c is the velocity of light, 5 is Stefan’s constant 
and x is the radiative energy density. 

Equations (8)-(12) indicate quite clearly that 
strictly the model is two-dimensional and the 
equations partial differential. Recall though that we 
are concerned with two particular problems which 
may be studied separately and indeed are so 
analysed later. 

For the first problem interest centres on the effect 
of a variable absorption coefficient on the predicted 
character of the flow in a channel with walls of 
uniform temperature. For this the analysis is 
straightforward. In all equations the parameter T is 
set identically zero and a solution exists in which all 
variables are functions of y alone, with 4, G 0, so 
that the equations degenerate into an ordinary 
differential system. 

In the second problem the effects of the non- 

uniformity of the wall temperature are taken into 
account but, as will be seen later. the absorption 
coefficient may be assumed constant. In this case it is 
more difficult to justify progress without a study of 
the full partial differential system. The model, even 
with constant absorption coefficient, is not capable 
of development using a regular power series expan- 
sion in x. A basic difficulty lies in the non-linearity in 

x of the exact form of the RHS of equation (10). 
Were this not the case a solution could be found 
such that all variables were at most exactly linear in 
x. Thus the fairly crude approximation is made, 
assuming a constant absorption coefficient, that the 
RHS of equation (10) may be replaced by its linear 
approximation in s, viz 

4iiaT4+ I~&cx~ T3Tx. 
h 

(13) 

Whilst the solution which then follows cannot’be 
interpreted as a first approximation to a power series 
expansion in x for the solution to the problem in the 
large, it may nevertheless be regarded in the sense 
indicated above as a linear approximation to the 
solution. It can therefore serve to provide an 



660 J. B. HELLIWELL 

indication of the effect of non-uniformity of wall 
temperature upon the transverse variation of the 
profiles of velocity, temperature and radiative flux at 
any particular cross-section of the channel. 

The mathematical analysis for both the above 
problems may usefully be combined in a single 
formulation. Thus set 

The absorption coefficient, using equations (2), (3) 
and (8) with T = 0, becomes 

a=~[T,-,~(T-T,)J”T”, (16) 

with m and II both set zero for the second problem. 

The equations of energy and radiative transfer, on 
identifying the terms independent of, and linear in, x 
become 

=o, (17) 

dq’? 
aC(2)+2-]65a~3T=~ 

d! 
(21) 

&‘2’ 

__ + 3aqp = 0, 
dJ 

(22) 

C’2’+ 3ahql" = 0, (23) 

aqx (21 = () (24) 

It remains to state the boundary conditions at the 
walls. Continuity of velocity and temperature require 

u=O, T=T,, T=T, at y= -h; 

u = 0, T = T,, r = T2 at 4‘ = +h. 
(25) 

The electromagnetic conditions may be expressed 
entirely in terms of B,. Following Shercliff [17] if d, 
and d, denote the wall thickness (both supposed 
much less than the channel height) it follows that 

Finally for 

dB oB, 
L-==O at J= -h, 
dql 1 1 

dB.1 oB, 
(26) 

d-+2=0 at J= +h. 
4 2 2 

the case of non-black walls Cess [ 181 has 

and M. F. MOSA 

derived the form for the radiative conditions appro- 
priate to the differential approximation. Thus if the 
upper and lower walls have emissivities 62 and c, 
respectively, then 

Z’2’- 4-2 q:T’= 16riT;‘T, at J’= +h 
( ! 1: 2 

3. PARAMETERS AND DIMENSIONLESS 
EQUATIONS 

A considerable number of named dimensionless 

parameters occur in this model and in order to 
portray these explicitly it is now necessary to 
introduce a set of dimensionless variables. Take the 
mean fluid velocity as reference velocity U, the 
temperature of the lower wall at .X = 0 as reference 
temperature T,, the emissive power CT: of a black 
wall at the reference temperature as base for the 
radiative variables and introduce the semi-channel 
height as a dimension of length. Thus set 

Define 

b2 

Introduce also 

(30) 

where J, is the mean current density. 
It is also useful to write 

N = Re/Bo, F = (Pr)(Ec). (31) 

Equations (6) (7) and (17)-(24) now become in 
dimensionless form 

dh 
-+c+E=O 
de 

d”v 2 

-+Mzd~-Gr~fl=O 
dv3 drl’ 

(33) 
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d2d 

FFN 
dQ:T' _ o 
dq 

(35) 

~r~Q;~‘-4wB”+‘[l -P(O-l)]” = 0 (36) 

dZ”’ 
---+ 3wjB”[l-/?(@- l)]“)Q::” = 0 

drl 
(37) 

dQ:? 

- 16w[l -p(O- l)]me”+3P = 0 (38) 

dCC2’ 
__ + 3w(O”[1 -p(@- I)]“‘;Q;? = 0 

dq 
(39) 

P2’+3wfB”[I -p(B- l)]“)Q;” = 0 (40) 

QL” = 0. (41) 

Using equation (6) to rearrange the electro- 
magnetic conditions, the fuI1 set of boundary con- 
ditions (25), (26) and (27) becomes 

2: = 0, 6 = I, H = o,, b = -K,E, 

(43) 

It should be noted that the parameters E, I, K,, 
K2 are not independent. Integration of equation (32) 
across the channel and application of the boundary 

conditions yields the relationship 

I=,!?+1 = 
K,+K2 

K,+K,+2' 
(44) 

4. THE EFFECT OF VARIABLE 
ABSORPTION COEFFICIENT 

in studies previously made in this field the 
variation of the absorption coefficient has been 
neglected. Thus we now examine the influence of this 
variation upon the distribution of temperature and 
radiative flux in the channel. In order to avoid any 
confusion the case of a channel with walls at 
uniform, but possibly different, temperatures is 
considered and then a direct comparison may be 
made with the earlier work of Helliweil [14] for 

constant coefficient. Thus in the system of equations 
(32)-(44) set 5 z 0. All variables carrying superscript 

(2) as well as a become zero and the equations for P 

and b separate from the remainder to give 

,,z=M. 
i 

cash M -cash Mq 
_- 

sinh M - M cash M i 
(45) 

M~coshM-sinhM~+~~~-K~ 

‘= sinh~-McoshM 
p. (46) 

1 2+K,+K, 

These forms are then substituted into equations (34), 
(36) and (37) the solutions of which are to be 
determined under boundary conditions (42) and (43). 

The solution of this problem is first obtained for 
three special cases with constant absorption coef- 
ficient. In circumstances when the temperature 
difference between the wails is small the equations 
may be linearised with respect to the temperature 
perturbation from that of the lower wall. An 
analytical form for the solution may be obtained but 
is not given here owing to its algebraic complexity; 
details can be found in Moss f19]. Secondly the 
solution is established in the optically thick limit for 
o>> l.Then 

Qi,” = - (I 6,/3w)Q3 d0idq. 

Employing a transformation due to Ozisik [20] one 
finds that the energy equation may be integrated so 

that the temperature is given by the solution of the 
algebraic equation 

4NF 
o+-/ = c,+c,!j 

-F(c,e’-c,cosh ~~~?+~scosh2M~), (47) 

where 

c1 =$&)‘+I)+F(r.,-c,coshM+c,coshZM), 

c =IM$.’ 
3 2 63 

2Mc, 
C& = 

sinhM-McoshM’ 

M2 

(" = (sinh M-Mcosh M)2 ' 

M cash M 2 
cg = 

sinhM-McoshM+K,+K,+?’ 

In the third special case the problem is analysed 
under the thin limit when Q cc 1. The appropriate 
radiative flux-temperature relationship is then 

dQ’.’ ’ 
2 = 4we4 
drl 

and insertion of this into the energy equation (34) 
leaves a non-linear differential equation which in 
general cannot be integrated. However if the first 
special case for walls of similar temperature is now 
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combined with the present limit the integration may 
be performed and one finds 

much closer agreement is apparent between the exact 
and approximate solutions in the cases of the 
linearised formulation and optically thin limit than 
under the optically thick limit. Thus conclusions 
drawn from analyses based upon the latter should be 
treated with greater circumspection. Profiles for 
various values of the parameters are presented in 
Figs. l-5. The results confirm those previously 
obtained less satisfactorily by Helliwell [ 13. 141 using 

methods of analogue computation. 

O=F 
i 

4M2c, 

S(S’-4M2) 
(2M sinh 2Mr7 sinh 2s~ 

S cash 2Mt1 cash 2Q) 

M2C, 
- 

S(S2 - M2) 
(2M cash Sq 

-S cash 2%~ cash Mq) - $ cash 2Sg 
i 

cash Sri 
-$cosh2Sq+c, -__ 

sin h Sg 

cash S 
+ c* __ 

sinhS ’ 
(48) 

where 

s = (16wNF)“2, 

4MZc, 

S(S2 -4M2) 
(S cash 2M cash 2s 

-2M sinh 2M sinh 2s) 

M2C, 

-S(S’-M’) 
(S cash 2s cash M 

2c, 
- 2M cash S) + F cash 2s 

I 

+$cosh2S++(O+l), 

(‘* =#-I). 

In cases with arbitrary values of the absorption 
coefficient and wall temperature ratio recourse must 
be had to digital computation. The appropriate 
forms of equations (34), (36) and (37) may be written 
as a system of four first order differential equations 
with mixed boundary conditions. Iterative computer 
routines are available for the solution of such 
systems, see, for instance, NAG 1213. The iteration 
may be started from one of the foregoing exact 
solutions. 

When the results of calculation are compared with 
those derived from the foregoing special cases, a 

1 0 rl 1 

Turning now to the case with variable absorption 

coefficient, which again is not amenable to exact 

mathematical solution. the distributions are obtained 
by digital computation in a similar manner to that 
described above. A selection is presented graphically 
in Figs. l-5. The iteration in this case however is 
started from the associated, previously computed, 
solution with constant coefficient. 

In discussing these results it should be noted from 

the form of the governing equations themselves that, 
apart from their influence upon the magnetic field, it 
is only as a sum that the wall conductivities K, and 
K, affect the held variables. This fact remains 
unchanged whether the absorption coefficient be 
constant or not. In the cases presented here the 
electrical and emissive properties of the walls have 
been taken identical so that K 1 = K, = K, z:, = t:? 
= c. Also as indicated above the parametric values 

m = I, II = 5 have been employed. Further, since the 

velocity and magnetic field profiles are well estab- 
lished, consideration is restricted to the temperature 
and radiative flux. It was found that the values of K 
and M have very little influence upon these and 
therefore the graphs displayed relate to the case M 
= I. K = 0 corresponding to :I moderate electro- 
magnetic interaction in a channel with electrically 
insulating walls. 

The parameter /j which provides ;I measure of the 

effect of density variations, through thermal expan- 
sion, upon the absorption coefficient is singled out in 
Fig. I. For increasing p and thus, with temperatures 

1.0 7 

__--- 
, QY -- ---- 

*e ---_-_ c . . 
I’ . . 

o-5 - . . 
‘.._ 

I 
-1 0 rl 1 

0=0.5 c=l K=O M=l N=loo F=O.Ol oJ=o.l 
--p=0 
- ---p= IO 

-____-___-__ p = I()() 

FIG. I. Variable absorption coefficient. Effect of parameter /j. 
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, 
-1 0 r7 1 -1 0 rl 1 

0 = 0.5 i: = I K = 0 M = I N = 100 (I) = 0. I /I = 0 

F=O -- 
----------------._ F = 0.1 _Q___-f_____X___ 

2 constant a variable 

FIG. 2. Constant and variable absorption coefficient. Effect of parameter F. 

-1 0 rl 1 -1 0 n 1 

0 = 0.5 i: = 1 K = 0 M = I F = 0.01 (I) = 0.1 11 = 0 

N= IO -t- 
______________ ____ N = 1 o()O __x_____X_____x___ 

o( constant G( variable 

FIG. 3. Constant and variable absorption coefficient. Effect of parameter N. 

1.0, 

QY 

-1 0 n 1 

0=0.5 r:=l K=O M= 

01 = 

__________________ (,I = 

a constant 

-1 0 r7 1 

I N=lOO F=O.Ol /I=0 

0.01 -- 
4.0 _f____f_____+__ 

a variable 

FIG. 4. Constant and variable absorption coefficient. Effect of parameter o. 
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___----- --_____ 
,:I_*-----*- -_ ----*-___;__ 

I 
-1 0 r) 1 -1 0 rl 1 

0 = 0.5 K = 0 M = I N = IO F = 0.01 (‘1 = 0. I /r = 0 
.~_ _~~~~~ ,; = I +pxpxpm 
___.______________ i; = 0.05 __p____?+_____+__ 

a collstant r variable 
Frc;. 5. Constant and variable absorption coefficient. Effect of parameter i:. 

everywhere less than that at datum level, a cor- 
respondingly increasing absorption coefficient the 
variation of the temperature profile becomes a little 
more marked whilst the magnitude of the radiative 
flux becomes significantly less. 

Figures 2-5 illustrate the effect of variation of the 
parameters F, N, w and E respectively, at the same 
time now singling out the influence of the fourth 
power law dependence of the absorption coefficient 

upon the temperature by choosing p = 0. The 
changes in profile consequent upon changes in F, N 
and w as measures of the relative importance of 
thermal conduction, radiative, viscous and fluid 

convective effects are in agreement with those of 
earlier workers. The novel information portrayed is 

that the effect of introducing a variable absorption 
coefficient whilst quite apparent is not of much 
significance and qualitative trends in the profiles are 
unaffected. A perhaps surprising conclusion is to be 
drawn from Fig. 5 that gross changes in wall 
emissivity have virtually no effect upon the tempera- 
ture distribution whilst the local radiative flux itself 

is, of course, greatly altered. 

5. THE EFFECT OF VARIABLE WALL 
TEMPERATURE AND THERMAL CONVECTION 

Consider now the consequences of a non-uniform 
temperature distribution along the channel walls 
together with convective effects arising from thermal 
expansion. Viskanta [I l] studied a related problem 
in a purely gas dynamic context with no electro- 
magnetic effects, whilst Greif et al. [IO] and Gupta 
and Gupta [12] have examined the magnetohydro- 
dynamic case but only under the optically thin limit 
for radiation. The present work extends the model to 
cover situations without restriction upon the opacity 
in magnetohydrodynamics. 

In Section 4 it has been noted that the intro- 
duction into the analysis of a variable absorption 
coefficient does not have a very significant effect 
upon the temperature and flux distributions. Thus in 

order to simplify the problem, hopefully without 

much loss of generality, the absorption coefficient 
will now be taken constant. Hence throughout 
equations (33)-(41) the constants 111 and II should be 
set zero. The contribution QI” to the radiative flux 
down the channel is then seen, from equation (41) to 
be identically zero. 

In the absence of radiation an exact solution may 
be obtained by setting the parameter N also equal to 
zero. The algebraic form is not presented here on 
account of its complexity, but details may be found 
in Mosa [19]. 

When radiative effects are taken into account the 

full system of equations (32)-(40) are to be solved 
with boundary conditions (42) and (43). By an 
appropriate choice of subsidiary variables the system 
may be reduced to a set of twelve first order non- 
linear differential equations and a single algebraic 
equation. The boundary conditions are split equally 
between the two ends of the range of integration so 
that the computational problem is non-trivial. The 
same general program for the solution as that used 
in Section 4 is available. An iterative method is 
employed and in the present instance the non- 
radiative analytic solution obtained above may be 
taken as the base from which to develop the 
iterations. 

The outcome of calculations for the velocity, 
magnetic field and temperature are presented in Figs. 
(6), (7) and (8) whilst the corresponding radiative 
flux is portrayed in Fig. (9). Except where otherwise 
stated on the figures the following values for the 
parameters are used in these calculations 

Gr = 1000, F = 0.001, Re = 100, 

N = 100, EC = 0.00 I, 1’ = 513, 

W = 0.1, E, = E2 = 1, K, = K, = 0. 

Although computations have been carried out for 
several values of the wall temperature ratios, the 
graphs presented here are typical and correspond to 

o=os. O,=O,=l. 

Detailed results for other values of the parameters 
are to be found in the work of Mosa [19]. Particular 



attention is given to the effect of varying the 

parameter z, increasing magnitude of which cor- 
responds to greater variations of wall temperatures; 
positive values are associated with an increase of 

temperature downstream, and negative values with a 
decrease. 

Radiative heat transfer in horizontal magnetohydrodynamic channel flow 

magnetic field O-104G (depending 

on fiuid electrical 

conductivity). 

Because of the manner in which the various 

physical parameters for a particular configuration 
combine to form the non-dimensional parameters 
and the fact that the latter are specified, and indeed 
varied independently, rather than the former, it is not 
possible to lay down precisely the physical dimensions 
for a particular problem to which all the solutions 
appertain. Specifically, however, the numerical details 
relate to gaseous rather than liquid flows. On a broad 
canvas the results may be expected to apply under 
conditions as follows: 

In Fig. 6 the classical influence of Hartmann 
number upon the velocity profile is seen to be little 
changed for small wall non-uniformity. However, it 
is apparent that as this non-uniformity becomes 
more marked the convective forces cause a distortion 
of the profile which for even quite modest tempera- 
ture variation is significant. Similar effects upon the 
magnetic field are shown in Fig. 7. 

The temperature in the channel is given sub- 
stantially by f3 since the additional contribution from 
r) is always to be multiplied by T and the com- 
putations never yield fi large. For a similar reason 
the transverse radiative flux is very approximately 
given by Qr’. As radiative energy becomes more 

substantial, as represented by increasing N, the 
relatively small changes in radiative flux lead to a 
considerable flattening of the temperature profile in 

mid-channel when wall non-uniformity is small. 

temperature 103-IO’K, 

fluid density 10-3-10-5gm/cm3, 
mean fluid speed I 03- 1 O4 cm/s, 
channel width IO-‘-IOcm, 

0 rl 1 -1 0 n 1 

r =O.ool M=2 
~- M=() _____________ 5: -(),O] 
--M=l r=O 
_____________ M = 5 T =O.Ol 

FIG. 6. Velocity profiles. 

665 

T =o.oot M=2 
----_M=l -----________ TZ -0.01 
_____________ M = 5 ~ T=o 

~ __ r=O.Ol 

FIG. 7. Magnetic field profiles 
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FIG. 9. Transverse radiative flux profiles 

Figures (8) and (9) however indicate that as the non- 
uniformity becomes more substantial the convective 

forces oppose this effect: indeed the infiuence of 
buoyancy forces upon the temperature and flux is 

marked and the flattening becomes less apparent. 
The temperature in mid-channel is considerably 
lowered as T increases with a corresponding broad 

decrease of radiative flux in the upper half channel 
and enhancement in the lower half. 

The streamwise radiative flux is given by 7QI”. 

Computation shows that with increase of wall 
temperature downstream there is an upstream flux of 
radiation which, despite the considerable variation of 
temperature across the channel, remains fairly uni- 
form. It is little affected by changes of wall emissivity 
but is strongly influenced by the fluid optical 
thickness, as was noted earlier in Section 4 for the 
transverse component. 

6. SUMMARY OF CONCLUSIONS 

The paper examines the interaction of conduction, 
convection and radiation on heat transfer in an 
electrically conducting fluid confined in a horizontal 

channel in the presence of a transverse magnetic 

field. Study is concentrated on two particular 
aspects. 

First a comparisot~ is made between the predicted 
profiles based upon (a) the commonly used constant 
absorption coefficient and (b) the more realistic 
coefficient dependent upon local fluid density and 
temperature. The detailed conclusions are to be 
found in Section 4. but for the convenience of the 
reader the main points are summarised here. 

1. Whilst qu~litativeiy unchanged the predicted 
variation across the channel in the profile of the 
radiative flux is suppressed by use of a variable 
absorption coefficient whilst the temperature profile 
becomes more similar to the linear form associated 
with pure conduction. The effects are not particularly 

marked when the temperatures of the walls are of the 
same order of magnitude. 

2. Changes in the coefficient of thermal expansion 
have a significant effect upon the radiative flux which 
is reduced in magnitude when the temperature 
variation leads to a rise in Ruid density. 

3. The temperature distribution is essentially un- 
affected by changes in wall emissivity. 

Secondly, the influence of a longitudinal variation 
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of wall temperature upon the transverse variation of 

velocity, temperature and radiative flux is analysed. 

The problem is studied in Section 5 from which the ‘. 

main conclusions are: 
(i) The effect of longitudinal thermal convection g. 

has a dominating influence upon the profiles. 
(ii) Distortion of the velocity profile is such that 

an increase of wall temperature downstream leads to 
9. 

a rise of velocity in the lower half of the channel and 
associated reduction in the upper half. A sufficiently 
large increase of wall temperature downstream may 

lead to tlow reversal near the upper wall when this is IO. 

cooler than the lower wall. 
(iii) Enhancement of radiative flux from a lower 11 

wall heated downstream leads to a more rapid fall of 
temperature in the lower half of the channel than in 

the absence of warming; the reverse trend occurs 
12. 

with cooling. 
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TRANSFERT THERMIQUE RADIATIF DANS UN ECOULEMENT 
MAGNETOHYDRODYNAMIQUE A L’INTERIEUR D’UNE CONDUITE 

HORIZONTALE, AVEC EFFET DE CONVECTION NATURELLE ET 
GRADIENT AXIAL DE TEMPERATURE 

R&m&Des ttudes de I’kcoulement d’un tluide chaud et ilectriquement conducteur, dans un canal 
horizontal rectangulaire avec un champ magnt-tique transversal et un transfert thermique par 
rayonnement, sont &endues pour prendre en compte ces deux effets. On considire une dkpendance en loi 
puissance du coefficient d’absorption en fonction de la temptrature. Une comparaison avec les r6sultats 
d’un coefficient d’absorption constant montre que les constquences ne sont pas particulibrement 
marqutes. Le second effet considtri est celui de l’intluence des forces d’Archimtde et du transfert 
thermique convectif quand les parois du canal sont chauffbes diffiremment et non-uniform6ment. Dans ce 
cas il y a une contribution significative aux profils qui sont considtrablement distordus par rapport a 
ceux qui correspondent B des temptratures de paroi uniformes. 

Dans cette etude, le gaa a une opaciti g&n&ale pour le transfert radiatif et les parois ont une 
conductivitk Clectrique et une Cmissivitt arbitraire. On prend aussi en compte la conduction thermique 
mol&culaire, la viscositb et la dissipation ohmique. On obtient quelques solutions exactes mais, en g&&al, 
les bquations aux dt-rivtes partielles sont intigrbes numtriquement et les rtsultats prisentts 

graphiquement. 
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WARMETRANSPORT DURCH STRAHLUNG BEI HORIZONTALER 
MAGNETOHYDRODYNAMISCHER KANALSTRijMUNG MIT AUFTRIEBSEFFEKTEN 

UND EINEM AXIALEN TEMPERATUR-GRADIENTEN 

Zusammenfassung-Es wurden Strijmungsuntersuchuneen an einem heigen, elcktrisch leitenden Fluid in 
einem horizontalen Rechteck-Kanal in Anwesenheit eines quergerichteten Magnetfeldes und spiirbarem 
Warmedbergang durch thermische Strahlung durchgefuhrt, und zwar mit dem Ziel, zwei Effekte 
besonders zu untersuchen. Zum ersten wurde die Abhlngigkeit des Absorptionsgrades von der 
Temperatur in Form eines Potenzgesetzes betrachtet. Ein Vergleich mit den Ergebnissen fur konstanten 
Absorptionsgrad zeigt, dal3 dieser EinlluD nicht besonders ausgepragt ist. Der zweite der erwghnten 
Effekte ist derjenige, der durch den EinfluB van Auftriebskr~ften und durch konvektiven W~rme~ber~ng 
entsteht, wenn die Kanalwande nur teilweise und ungleichm~~ig beheizt sind. In diesem Fall ergibt sich 
ein wichtiger EinRuP auf die Feldprofile, die erheblich gestort sind gegeniiber denen bei gleichformigen 
Wandtemperaturen. Bei allen Untersuchungen wurde angenommen, da/3 das Gas fur Strahlung 
durchlassig ist und dal3 die Wande beliebige elektrische Leitfihigkeit und beliebigen Emissionsgrad 
besitzen. Molekulare Warmeleitung, Viskositat und Ohm&he Dissipation sind samtlich in Betracht 
gezogen worden. Es wurden einige wenige exakte Losungen gewonnen, im allgemeinen aber wurden die 

ma~geblichen Differentialgleic~ungen numerisch integriert und die Ergebnisse grafisch aufgetragen. 

JIY’JMCTbIfi l”IEPEHOC TEI-IJIA B TOPM30HTAJIbHOM 
MAl-HkfTOIXi~PO~kiHAMM’4ECKOM nOTOKE B KAHAJIE IlPlM HAJITIMYHM: Czl.Jl 

I’IJIABYYECTM M: AKCMAJIbHOrO lFPAJ@iEHTA TEMfIEPATYP 

Alar - Ilpoz3eneao u~ne~o~HHe Teqemm tiarperoii ?neKTpon~uo~Ho~ *mwwrW B IIpshiio- 
yronbHohi ropn3omanbwoh4 xamne np~ Hammm nonepevHor0 Marmmoro nom H 3Ha4mWbHoro 

JiyWiCTOrO TeIlJlOBOrO IIOTOKa C ydTOM flByX @KTOpOB. Bo-nepem, y'iHTbI%UaCb CTt?lleWHiSl 

3aBHcHmcTb K03@$HmeHTa a6cop6qm 0~ TemepaTypbL Cpanneme c pe3ynbTaTahm, nonyres- 
HbIMH npti n0CTOnHHOM 3HaveHmi KOY@,WHeHTa a6cop6umt, He BbMBHJ,O xaxxx-nx6o 3aMeTmx 

OTIlH'iHii. Bo-BTOP~~X, yWTbIBaJlOCb BJlHRHHe CHJI IIJKiByWCTH H KOHBeKTWBHOrO TCnJlO06MeHa IlpH 

pa3nx~~oirHHeO~~opo~oSjTebtnepaTypecTeHorxamJia. B 3~0~ cnysae npo@fn~non~ 3HaWTenbHO 

0Tnmamcb 0~ npOi$meii np~ omiop0miofi TehfnepaType cTezioK. 06umu mm Bcex sxcnepsibiezsroe 

6~oAouy~eH~e 0 Hen~H~aeM~T~ ra3amR nyrmforo noToga H n~H3BonbHo~ ~nexT~n~~o~- 
HOCTH H 553nyqaTenbHoii cnoco6~oc~ii cTeHoK. B 0nbITax yvimbmanacb hionexynapnar renno- 
np0BOAHOCTb, BR3KOCTb H @,CCHIIaW,l AwtOyJIeBa Rnfiik nOny'IeH0 HBCKOJIbKO TO'iHbIX pemeHti, 

o~Haxo~~~0BH0~n~Be~eHoYHcneHHOe~Te~~~sa~HenH~~H~HanbHblxypaBeeeldi 5i pe3ynb- 
TarblnpencTanneHbl n eKqe rpa&moB. 


