Int. J. Heat Muss Transfer. Vol. 22, pp. 657-668
© Pergamon Press Ltd. 1979. Printed in Great Britain

0017-9310/79/0501-0657 $02.00/0

RADIATIVE HEAT TRANSFER IN HORIZONTAL
MAGNETOHYDRODYNAMIC CHANNEL FLOW WITH
BUOYANCY EFFECTS AND AN AXIAL
TEMPERATURE GRADIENT

J. B. HELLIWELL and M. F. Mosa
School of Mathematics, University of Bradford, West Yorkshire, England

(Received 20 January 1978 and in revised form 10 August 1978)

Abstract --Studies of the flow of a hot electrically conducting fluid in a rectangular horizontal channel
with transverse magnetic field and significant heat transfer by thermal radiation are extended to take
particular account of two effects. In the first of these a power law dependence of the absorption
coefficient upon the temperature is taken into consideration. Comparison with the results for constant
absorption coeflicient shows the consequences to be not particularly marked. The second effect examined
is that of the influence of buoyancy forces and convective heat transfer when the channel walls are
differentially and non-uniformly heated. In this case there is a significant contribution to the field profiles
which are considerably distorted from those when the wall temperatures are uniform.

Throughout the investigations, the gas is taken to have general opacity for radiative transfer and the
walls are of arbitrary electrical conductivity and emissivity. Molecular heat conduction, viscosity and
ohmic dissipation are all taken into account. A few exact solutions are obtained but in general the

governing differential equations are integrated numerically and the results presented graphically.

NOMENCLATURE
b, dimensionless magnetic field ;
c, velocity of light ;
¢, ¢, specific heats;
d, wall thickness ;
g, gravitational acceleration ;
h, channel semi-width ;
k, coefficient of thermal conductivity;
m,n, indices [see equation (3)];
D, pressure ;
q, radiative flux;
u, velocity ;
v, dimensionless velocity ;

x,v,z, coordinates;

Bo, Boltzmann number;

By,  applied magnetic field ;

B magnetic field component ;
E, electric field number;

E,,  electric field;

Ec, Eckert number;

F, defined PrEc;

Gr,  Grashof number;

I, current number ;

J, current density ;

K, wall conductivity number ;

K,,  absorption coefficient parameter [see
equation (3)];

M, Hartmann number;

N, defined Re/Bo:

Pr, Prandtl number;

0, dimensionless radiative flux ;

Re,  Reynolds number;

Re,,, magnetic Reynolds number;

T* T,T, temperatures [see equation (1)];
U, mean fluid velocity.

Greek symbols

a, absorption coefficient ;

b, coefficient of thermal expansion ;
s specific heat ratio;

g, wall emissivity;

P, density;

1, dimensionless y coordinate ;

o, electrical conductivity;

¢ Stefan’s constant;

0,6,0, dimensionless temperatures
[see equation (28)];

1, scale factor [see equation (1)];

1, coefficient of viscosity;

u,,  permeability;

, Bouguer number ;

%, dimensionless radiative energy density;
z, radiative energy density.

Subscripts
1 value at lower wall;

2, value at upper wall;
X,y,z, vector components.

Superscripts

1 part of variable independent of x [see

equations (13)-(15)];

2, part of variable dependent on x [see
equations (13)-(15)].

>

1. INTRODUCTION

SimMpLE Hartmann flow of an electrically conducting
incompressible fluid in a rectangular channel with
downstream pressure gradient and transverse ap-
plied magnetic field is a well understood basic
configuration. However, a considerable number of
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physical attributes of a realistic fluid which could
well be significant are omitted from this model.
Among these are effects of thermal conduction and
convection due to buoyancy. In addition, when the
temperature is high, the importance of radiative heat
transfer is quite overlooked.

In recent years a number of studies have been
carried out specifically concerned with elucidating
the influence of the various mechanisms of heat
transfer in channel flow of an electrically conducting
fluid in the presence of a magnetic field. These
investigations have application in problems as-
sociated with the cooling of nuclear reactors as well
as in more wide ranging areas involving the use of
magnetohydrodynamic pumps and generators. Ad-
ditionally they also serve to enhance our broad
understanding of motions involving plasmas and
conducting fluids generally.

The fundamental effects of convective heat transfer
in magnetohydrodynamics have been analysed by
Siegel [1] and Alpher [2], among others. For a
vertical channel with constant wall temperatures
Gershuni and Zhukhovitsky [3] examined the
problem whilst Yu [4] considered the same con-
figuration but with walls of linearly varying tempera-
ture. Particular emphasis was placed upon the effect
of electrical conductivity of the walls by Chang and
Yen [5]. The influence of buoyancy forces in a
horizontal channel with non-conducting walls has
been studied by Gill and Casal [6] and Gupta [7].
More recently Jana [8] has presented an exact
solution for the free and forced convective flow
between two horizontal finitely conducting walls
with linear temperature variation. The effects of
convection have also been investigated by Soundal-
gekar [9].

All the above analyses however take no account of
any possible effects of radiative heat transfer. Some
study of the interaction in the absence of elec-
tromagnetic effects has been made by Greif, Habib
and Lin [10] and Viskanta [11] has examined some
aspects of the influence of radiation and magnetic
field on the flow in a horizontal channel. Gupta and
Gupta [12] have discussed the effect of radiation on
the convection in an electrically conducting fluid in a
vertical channel. However in all these investigations,
in order to simplify the analyses and generate exact
solutions, the optically thin limit has been employed
for radiative transfer with consequent loss of gener-
ality. An earlier paper by one of the present authors,
Helliwell [13] has examined the effect of radiation
upon simple Hartmann flow under conditions of
general opacity using the so-called differential approx-
imation for radiative transfer and, in a sequel,
Helliwell [14] has gone on to introduce the further
effect of thermal conduction. The purpose of the
present paper is to extend this previous study of the
transverse variation of the flow profiles so as to take
account of the dependence of the absorption coef-
ficient upon the temperature and density and to
generalise the configuration to the case when the

horizontal chanrel walls, having different linear axial
temperature variations, are of arbitrary electrical
conductivities. The effects of buoyancy are also
introduced.

2. THE MODEL AND GOVERNING EQUATIONS

Consider a long channel of great width and of
height 2h lying between two horizontal walls of
arbitrary electrical conductivity. Take an origin of
coordinates in some appropriate cross-section so
that the walls become the planes y = +h and the x
axis lies parallel to the direction of flow of an
electrically conducting fluid which fills the channel.
The temperatures T* of the walls are taken to vary
linearly with x so that

T*

il

N
T¢=T +—T,
h
(H
T*

X _
r=T+T,
1

where Ty, T,, T,, T, are constants and 7 is a suitable
scale factor. Throughout this paper suffices (1) and
(2) refer to values at the lower and upper wall
respectively. The bounds of the channel normal to
the - axis are assumed to be perfectly conducting
electrodes set infinitely far apart so that any
dependence upon the - coordinate vanishes from the
equations. The electrical conductivities of the fluid
and walls are all supposed constant and are denoted
respectively by o, 6, and o,. An externally applied
magnetic field B, is applied uniformly across the
channel in the direction of the y axis.

In order to ease somewhat the mathematical
analysis without, it is hoped, much loss of reality the
Boussinesq approximation to the equation of state is
introduced, as in most previous studies. Thus the
fluid is supposed incompressible so far as direct
contributions from the density p to the conservation
equations are concerned apart from that arising from
the buoyancy term in the equation of momentum.
We write

ﬂ:l)l[]_ﬁ(T*_TﬂJ’ 2
T,
where f# is a coefficient of thermal expansion. A
further fairly gross assumption is made that the
coefficients of viscosity and thermal conductivity u
and k respectively are constants. However the
absorption coefficient « for a grey gas at fairly high
temperatures is known to be a more rapidly varying
function of the temperature than either x4 or k, and
following Armstrong et al. [15] may be written in the
form

2= K,p"T*" 3)

For instance when p ~1.3x10"*g/cm® and T*
~ 10*K one has m~ 1, n~5. The variation of
density with temperature is also retained in this form
for a. One of the objects of the present paper is to
examine the consequence of taking this variable form
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for o ag compared with the commonly used constant
coefficient.

For fully developed laminar flow the continuity
equation is identically satisfied with the only non-
zero velocity component horizontal and a function of
y alone. This is written u = u(y). Apart from cases
when the gas has an extremely high temperature
(> 10°K) it is known that no contribution arises
from radiative effects in the equation of conservation
of momentum, and only that from radiative flux in
the equation of conservation of energy; see for
instance Vincenti and Kruger [16]. The equation of
motion is therefore unchanged from that of con-
ventional magnetohydrodynamics, which together
with the electromagnetic equations may be found in
standard texts, as for example Shercliff [17]. From
these it follows that the electric current density has a
single component J = J(y) in a direction parallel to
the z axis. A component B, = B, (y) of magnetic field
is induced parallel to the flow whilst the transverse
component remains parallel to the y axis and has
constant magnitude B,. Furthermore the electric
field possesses a single constant component E,
parallel to the z axis. This set of equations thus
reduces to

ép d*u 8 @
ax # dy? o
op
oy
—1dB,
J=—— = o(Ey+uB,), (6)
e dy

where p is the pressure, u, is the permeability and g
is the gravitational acceleration. Elimination of p and
J from these equations following the use of equation
(2) leads to the relationship

B, d’B_ d3u fi 0T*

2 =g —.
Lo dyz #dy‘” P19 T,l ax

(M

Hence, since the left hand side is a function of y
alone, it follows that the most general possible form
for T* is linear in x, consistent with the form (1) for
the temperatures of the walls. We write

X _
T*=T()+, T (®)

Taking account of the above forms and introduc-
ing the contributions from the radiative flux q (of
which the component in the = direction is identically
zero, the others ¢, g, being functions of both x and
y), the equation of energy may be written

L d2T+rx dZT) Gl
— —p;—1
& T Hdyr )

oq, oq, J* du\?
L S S e )
ox ¢y o dy

where ¢, is the specific heat at constant volume.
To close the system of equations it is necessary to
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introduce the equations of radiative heat transfer. In
its exact form it is well known that this gives rise to a
coupled system of integro—differential relationships,
and to circumvent the consequent formidable
analytical difficulties various approximations have
been introduced. Here we employ the so-called
differential approximation, see Vincenti and Kruger
[16], which replaces the exact equations by a system
of approximating differential equations. For a two-
dimensional configuration these may be written

acZ + %4 + %y _ 4GaT**,

ox  dy

(10)

oz
¢—+30q, =0,
0x

0%
c—+ 3ocqy =0,
dy

where ¢ is the velocity of light, ¢ is Stefan’s constant
and X is the radiative energy density.

Equations (8)-(12) indicate quite clearly that
strictly the model is two-dimensional and the
equations partial differential. Recall though that we
are concerned with two particular problems which
may be studied separately and indeed are so
analysed later.

For the first problem interest centres on the effect
of a variable absorption coefficient on the predicted
character of the flow in a channel with walls of
uniform temperature. For this the analysis is
straightforward. In all equations the parameter t is
set identically zero and a solution exists in which all
variables are functions of y alone, with g, =0, so
that the equations degenerate into an ordinary
differential system.

In the second problem the effects of the non-
uniformity of the wall temperature are taken into
account but, as will be seen later, the absorption
coefficient may be assumed constant. In this case it is
more difficult to justify progress without a study of
the full partial differential system. The model, even
with constant absorption coefficient, is not capable
of development using a regular power series expan-
sion in x. A basic difficulty lies in the non-linearity in
x of the exact form of the RHS of equation (10).
Were this not the case a solution could be found
such that all variables were at most exactly linear in
x. Thus the fairly crude approximation is made,
assuming a constant absorption coefficient, that the
RHS of equation (10) may be replaced by its linear
approximation in x, viz

T

4&aT“+16&azT3Tx. (13)
Whilst the solution which then follows cannot”be
interpreted as a first approximation to a power series
expansion in x for the solution to the problem in the
large, it may nevertheless be regarded in the sense
indicated above as a linear approximation to the
solution. It can therefore serve to provide an
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indication of the effect of non-uniformity of wall
temperature upon the transverse variation of the
profiles of velocity, temperature and radiative flux at
any particular cross-section of the channel.

The mathematical analysis for both the above
problems may usefully be combined in a single
formulation. Thus set

= = N _
d=2m+fﬂ% (14)

2,
T°X [RY

(2) — 4 (2)
h Qx . qy_q_\' + I’l qy ‘

15
; (15)

4 =14y +
The absorption coefficient, using equations (2), (3)
and (8) with T = 0, becomes

m

Krpl
"

o= [T, —p(Tr—=T)]"T", (16)

with m and » both set zero for the second problem.
The equations of energy and radiative transfer, on

identifying the terms independent of, and linear in, x

become

deT €l 72 -
— 1T —— g\
dy? b h h 4
dg  J? du\?
s —) =0, (17)
dy o H<dy> (
dZT dqtl)
— —F —q, 18
dyz dy (18)
,[2 ‘((l)
WEW g4 4T =0, (19)
h
dzth
——+30g{" =0, (20)
dy
2)
ai(2‘+»d}——l6d‘oz7“37=0, 21)
v
di(Z)
—+30g'? = 0, (22)
dy :
£ 4 3ahgh =0, (23)
agP = 0. (24)

It remains to state the boundary conditions at the

walls. Continuity of velocity and temperature require
u=0,T=T, T=T, at y= —h;
R (25)
u=0 T=T, T=T, at y = +h.

The electromagnetic conditions may be expressed
entirely in terms of B,. Following Shercliff [17] if d,
and d, denote the wall thickness (both supposed
much less than the channel height) it follows that

dB, 0B,

T p =0 at y = —h,
Y 044y (26)
dB_‘,+ oB, 0 at h
= a ) = .
dy 0,d, )

Finally for the case of non-black walls Cess [18] has
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derived the form for the radiative conditions appro-
priate to the differential approximation. Thus if the
upper and lower walls have emissivities ¢, and ¢,
respectively, then

- 4 —
Z‘Z’+<4A2 P =166T3T, at y = —h;

& /

27)

. 4 . (
S — =2 )¢\ =46T}

&2 /
2‘2'-(i~2>q‘2’ =166T;T, at y= +h

¥ 212 J
P

3. PARAMETERS AND DIMENSIONLESS
EQUATIONS

A considerable number of named dimensionless
parameters occur in this model and in order to
portray these explicitly it is now necessary to
introduce a set of dimensionless variables. Take the
mean fluid velocity as reference velocity U, the
temperature of the lower wall at x = 0 as reference
temperature 7T,, the emissive power ¢ T;* of a black
wall at the reference temperature as base for the
radiative variables and introduce the semi-channel
height as a dimension of length. Thus set

u= U, T =T,0, T =T,0,
q = 6TQ, S =6T]'%, y=hy, (28)
B, = Bou,cUhb, T,=T,0, T, =T,0,,
T, =T0,.
Define
a\!'? hp, U U’
M=Byh|—) , Re= , Ec =,
I H ¢, Ty
¢ ) ue
= ﬂ Re,, = p,0Uh, Pr= fk~p, (29)
h? ), U?
r= 90,/ , Bo= '[jA, w= K, p{T'h=oyh
ny 6T}
Introduce also
g,d oyd
Kl _ 141 . K2 _ 242 ,
oh oh

(30)
E, /= Johu,

E=—,
UB,

where J, is the mean current density.
It is also useful to write

N = Re/Bo, F = (Pr)(Ec). (31)

Equations (6), (7) and (17)-(24) now become in
dimensionless form

db
CT+U+E:0 (32)

n

& | d%
M= Gred =0
n

a7 (33)
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20 dv\? db\?
— + F|{—] +M?|—
dp* [ \dn dy

dow R
—N(*Q—’—w + tfovz’) - ﬁvﬂ =0 (34)
dy yEc
dé dg®
— = F _& =0 (35)
dn dn
d (‘1)
dQ;; +wlg"[1—pE-1)]" "
+12Q@ 4" 1 =@~ =0 (36)
dz(l) )
an +3a{0"[1-pO-D]"O" =0 (37)
d ('23
?’ + {01 -pH-1]mz?
n
—16w[1—-BO—1)]"0""F =0 (38)
(2}
; +30{01—-EO-1]"0P =0  (39)
D30I -] 0P =0 (40)
0P =0. @n

Using equation (6) to rearrange the electro-
magnetic conditions, the full set of boundary con-
ditions (25), (26) and (27) becomes

¢=0,0=1,0=0, b=—~K,E,

4
Z‘“+(———2)Q‘V” =4, (42)
& i
o [* 5\
I+ ?———2 0 =160, at = —1L
“ 1 /
r=0 0=0, =0, b=K,E,
4
i~ <-—~ - Z)Q‘y“ = 404, (43)
&

4
Z‘Z’—(~~ 2)Q§.2’ = 166°0,, at 5= 1.
&

It should be noted that the parameters E, I, K,
K, are not independent. Integration of equation (32)
across the channel and application of the boundary
conditions yields the relationship

K,+K,

I=E+l=o—tr,
K, +K,+2

(44)

4. THE EFFECT OF VARIABLE

ABSORPTION COEFFICIENT
In studies previously made in this field the
variation of the absorption coefficient has been
neglected. Thus we now examine the influence of this
variation upon the distribution of temperature and
radiative flux in the channel. In order to avoid any
confusion the case of a channel with walls at
uniform, but possibly different, temperatures is
considered and then a direct comparison may be
made with the earlier work of Helliwell [14] for

constant coefficient. Thus in the system of equations
(32)-{44) set T = 0. All variables carrying superscript
(2) as well as @ become zero and the equations for »
and b separate from the remainder to give

cosh M —cosh My
v = - (45)
sinh M —M cosh M
Mncosh M —sinhMy 2n+K,—K
_ 7 ’?+ n 1 2 (46)

snhM—McoshM  24+K,+K,

These forms are then substituted into equations (34),
(36) and (37) the solutions of which are to be
determined under boundary conditions (42) and (43).

The solution of this problem is first obtained for
three special cases with constant absorption coef-
ficient. In circumstances when the temperature
difference between the walls is small the equations
may be linearised with respect to the temperature
perturbation from that of the lower wall. An
analytical form for the solution may be obtained but
is not given here owing to its algebraic complexity;
details can be found in Mosa [19]. Secondly the
solution is established in the optically thick limit for
w > 1. Then

QY = —(16/30)0° d6/dn.

Employing a transformation due to Ozisik [20] one
finds that the energy equation may be integrated so
that the temperature is given by the solution of the
algebraic equation

4NF

O+—0%=c +cyn
3w

— F(cyn? —cycosh My +cgcosh2Mn),  (47)

where

INF .
¢ =Tw—(® + 1)+ F(c3 — ¢y cosh M +c5cosh 2M),

1 INF
e =3O+ (@'~ 1)

. _1lag2.2
C3~7M Cos

2Mey
Cq= N
* 7 sinhM—Mcosh M
MZ
(g=———— |
" (sinh M — M cosh M)?
M cosh M 2

Co = + .
sinhM—McoshM K,+K,+2

In the third special case the problem is analysed
under the thin limit when @ « 1. The appropriate
radiative flux—temperature relationship is then

1

dQlV

dn
and insertion of this into the energy equation (34)
leaves a non-linear differential equation which in

general cannot be integrated. However if the first
special case for walls of similar temperature is now

= 4w@*
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combined with the present limit the integration may
be performed and one finds

0= Pl M ot inh 2Mpsinh 25
=F{ 5 _ si i
S(S*—4M?) . s 1
-~ S cosh 2My cosh 2Sn)
M3,
~-—————(2M cosh Sy
S(S2-M?)

2¢ ‘
~Scosh 25y cosh My)— E(; cosh 28y %

3 cosh 25+ cosh Sp N sinh Sy
—3cos Cq———t Cg
¢ e cosh § ® sinhs
where

S = (16wNF)"?,

4M3c,
¢y =F| —————(Scosh2M cosh 2§
S(S?—4M?)
—2M sinh 2M sinh 28)
M2,
——————(Scosh2Scosh M
S(52 —M?)

2¢
—2Mcosh S) + ?; cosh 25]

+3cosh2§+4(@©+1),
cg =3HO-1).

In cases with arbitrary values of the absorption
coefficient and wall temperature ratio recourse must
be had to digital computation. The appropriate
forms of equations (34), (36) and (37) may be written
as a system of four first order differential equations
with mixed boundary conditions. Iterative computer
routines are available for the solution of such
systems, see, for instance, NAG [21]. The iteration
may be started from one of the foregoing exact
solutions.

When the results of calculation are compared with
those derived from the foregoing special cases, a

much closer agreement is apparent between the exact
and approximate solutions in the cases of the
linearised formulation and optically thin limit than
under the optically thick limit. Thus conclusions
drawn from analyses based upon the latter should be
treated with greater circumspection. Profiles for
various values of the parameters are presented in
Figs. 1-5. The results confirm those previously
obtained less satisfactorily by Helliwell [ 13, 14] using
methods of analogue computation.

Turning now to the case with variable absorption
coefficient, which again is not amenable to exact
mathematical solution, the distributions are obtained
by digital computation in a similar manner to that
described above. A selection is presented graphically
in Figs. 1-5. The iteration in this case however is
started from the associated, previously computed,
solution with constant coefficient.

In discussing these results it should be noted from
the form of the governing equations themselves that,
apart from their influence upon the magnetic field, it
is only as a sum that the wall conductivities K, and
K, affect the field variables. This fact remains
unchanged whether the absorption coefficient be
constant or not. In the cases presented here the
electrical and emissive properties of the walls have
been taken identical so that K; = K, = K, ¢, = ¢,
=¢. Also as indicated above the parametric values
m = 1, n = 5 have been employed. Further, since the
velocity and magnetic field profiles are well estab-
lished, consideration is restricted to the temperature
and radiative flux. It was found that the values of K
and M have very little influence upon these and
therefore the graphs displayed relate to the case M
=1, K =0 corresponding to a moderate electro-
magnetic interaction in a channel with electrically
insulating walls.

The parameter 5 which provides a measure of the
effect of density variations, through thermal expan-
sion, upon the absorption coefficient is singled out in
Fig. 1. For increasing f and thus, with temperatures

0-54 Tl
—’1 0o n ﬁ1
N=100 F=00l w=01
—_—p=0
— — —f=10
----------- =100

F1G. 1. Variable absorption coefficient. Effect of parameter f3.
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104

-

n
N=100 wo=01 =0
B e S
2 constant o variable

Fi1G. 2. Constant and variable absorption coefficient. Effect of parameter F.

1-0 q

. 0754
4 0 n 1 -1 0 n B
O=05 ¢=! K=0 M=1! F=00l w=0! =0

N=10 —x—x—x-
e N = 1000 - %-~--%=~---%---
o constant o variable

F1G. 3. Constant and variable absorption coefficient. Effect of parameter N.

101

P e a

©=05 ¢=1 K=0 M=1 N=100 F=001 =0

o =001 %—%—x—
e @0 =40 ~Heeo-KmeHmm
« constant « variable

F1G. 4. Constant and variable absorption coefficient. Effect of parameter w.
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0-5-
- o 0 1 o a1
=05 K=0 M=1 N=100 F=00l o=01 f=0
—_—— =1 —X—X—%—

a constant

&= 0.05 -%----%-------

2 variable

F1G. 5. Constant and variable absorption coefficient. Effect of parameter .

everywhere less than that at datum level, a cor-
respondingly increasing absorption coefficient the
variation of the temperature profile becomes a little
more marked whilst the magnitude of the radiative
flux becomes significantly less.

Figures 2-5 illustrate the effect of variation of the
parameters F, N, w and ¢ respectively, at the same
time now singling out the influence of the fourth
power law dependence of the absorption coefficient
upon the temperature by choosing $=0. The
changes in profile consequent upon changes in F, N
and w as measures of the relative importance of
thermal conduction, radiative, viscous and fluid
convective effects are in agreement with those of
earlier workers. The novel information portrayed is
that the effect of introducing a variable absorption
coefficient whilst quite apparent is not of much
significance and qualitative trends in the profiles are
unaffected. A perhaps surprising conclusion is to be
drawn from Fig. 5 that gross changes in wall
emissivity have virtually no effect upon the tempera-
ture distribution whilst the local radiative flux itself
is, of course, greatly altered.

5. THE EFFECT OF VARIABLE WALL
TEMPERATURE AND THERMAL CONVECTION

Consider now the consequences of a non-uniform
temperature distribution along the channel walls
together with convective effects arising from thermal
expansion. Viskanta [11] studied a related problem
in a purely gas dynamic context with no electro-
magnetic effects, whilst Greif et al. [10] and Gupta
and Gupta [12] have examined the magnetohydro-
dynamic case but only under the optically thin limit
for radiation. The present work extends the model to
cover situations without restriction upon the opacity
in magnetohydrodynamics.

In Section 4 it has been noted that the intro-
duction into the analysis of a variable absorption
coefficient does not have a very significant effect
upon the temperature and flux distributions. Thus in
order to simplify the problem, hopefully without

much loss of generality, the absorption coefficient
will now be taken constant. Hence throughout
equations (33)—(41) the constants m and n should be
set zero. The contribution @2 to the radiative flux
down the channel is then seen, from equation (41) to
be identically zero.

In the absence of radiation an exact solution may
be obtained by setting the parameter N also equal to
zero. The algebraic form is not presented here on
account of its complexity, but details may be found
in Mosa [19].

When radiative effects are taken into account the
full system of equations (32)-(40) are to be solved
with boundary conditions (42) and (43). By an
appropriate choice of subsidiary variables the system
may be reduced to a set of twelve first order non-
linear differential equations and a single algebraic
equation. The boundary conditions are split equally
between the two ends of the range of integration so
that the computational problem is non-trivial. The
same general program for the solution as that used
in Section 4 is available. An iterative method is
employed and in the present instance the non-
radiative analytic solution obtained above may be
taken as the base from which to develop the
iterations.

The outcome of calculations for the velocity,
magnetic field and temperature are presented in Figs.
(6), (7) and (8) whilst the corresponding radiative
flux is portrayed in Fig. (9). Except where otherwise
stated on the figures the following values for the
parameters are used in these calculations

Gr=1000, F=10.001, Re =100,
N =100, Ec=0001, 7=5/3,
w=01 ¢g=¢=1 K, =K,=0

Although computations have been carried out for

several values of the wall temperature ratios, the

graphs presented here are typical and correspond to
®=05 0,=0,=1.

Detailed results for other values of the parameters

are to be found in the work of Mosa [19]. Particular
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attention is given to the effect of varying the
parameter 7, increasing magnitude of which cor-
responds to greater variations of wall temperatures;
positive values are associated with an increase of
temperature downstream, and negative values with a
decrease.

Because of the manner in which the various
physical parameters for a particular configuration
combine to form the non-dimensional parameters
and the fact that the latter are specified, and indeed
varied independently, rather than the former, it is not
possible to lay down precisely the physical dimensions
for a particular problem to which all the solutions
appertain. Specifically, however, the numerical details
relate to gaseous rather than liquid flows. On a broad
canvas the results may be expected to apply under
conditions as follows:

103-10*K,
10731073 gm/cm?,
103-10* cm/s,
10710 ¢cm,

temperature
fluid density
mean fluid speed
channel width

665

0-10*G (depending
on fluid electrical
conductivity).

magnetic field

In Fig. 6 the classical influence of Hartmann
number upon the velocity profile is seen to be little
changed for small wall non-uniformity. However, it
is apparent that as this non-uniformity becomes
more marked the convective forces cause a distortion
of the profile which for even quite modest tempera-
ture variation is significant. Similar effects upon the
magnetic field are shown in Fig. 7.

The temperature in the channel is given sub-
stantially by 8 since the additional contribution from
0 is always to be multiplied by t and the com-
putations never yield 0 large. For a similar reason
the transverse radiative flux is very approximately
given by Q\". As radiative energy becomes more
substantial, as represented by increasing N, the
relatively small changes in radiative flux lead to a
considerable flattening of the temperature profile in
mid-channel when wall non-uniformity is small.

F1G. 6. Velocity profiles.
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F1G. 7. Magnetic field profiles.
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F1G. 9. Transverse radiative flux profiles.

Figures (8) and (9) however indicate that as the non-
uniformity becomes more substantial the convective
forces oppose this effect; indeed the influence of
buoyancy forces upon the temperature and flux is
marked and the flattening becomes less apparent.
The temperature in mid-channel is considerably
lowered as t increases with a corresponding broad
decrease of radiative flux in the upper half channel
and enhancement in the lower half,

The streamwise radiative flux is given by Q"
Computation shows that with increase of wall
temperature downstream there is an upstream flux of
radiation which, despite the considerable variation of
temperature across the channel, remains fairly uni-
form, It is little affected by changes of wall emissivity
but is strongly influenced by the fluid optical
thickness, as was noted earlier in Section 4 for the
transverse component.

6. SUMMARY OF CONCLUSIONS
The paper examines the interaction of conduction,
convection and radiation on heat transfer in an
electrically conducting fluid confined in a horizontal
channel in the presence of a transverse magnetic

field. Study is concentrated on two particular
aspects.

First a comparison is made between the predicted
profiles based upon (a) the commonly used constant
absorption coefficient and (b) the more realistic
coefficient dependent upon local fluid density and
temperature. The detailed conclusions are to be
found in Section 4, but for the convenience of the
reader the main points are summarised here.

1. Whilst qualitatively unchanged the predicted
variation across the channel in the profile of the
radiative flux is suppressed by use of a variable
absorption coefficient whilst the temperature profile
becomes more similar to the linear form associated
with pure conduction. The effects are not particularly
marked when the temperatures of the walls are of the
same order of magnitude.

2. Changes in the coefficient of thermal expansion
have a significant effect upon the radiative flux which
is reduced in magnitude when the temperature
variation leads to a rise in fluid density.

3. The temperature distribution is essentially un-
affected by changes in wall emissivity.

Secondly, the influence of a longitudinal variation
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of wall temperature upon the transverse variation of
velocity, temperature and radiative flux is analysed.
The problem is studied in Section 5 from which the
main conclusions are:

(i) The effect of longitudinal thermal convection
has a dominating influence upon the profiles.

(ii) Distortion of the velocity profile is such that
an increase of wall temperature downstream leads to
a rise of velocity in the lower half of the channel and
associated reduction in the upper half. A sufficiently
large increase of wall temperature downstream may
lead to flow reversal near the upper wall when this is
cooler than the lower wall.

(iif) Enhancement of radiative flux from a lower
wall heated downstream leads to a more rapid fall of
temperature in the lower half of the channel than in
the absence of warming; the reverse trend occurs
with cooling.
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TRANSFERT THERMIQUE RADIATIF DANS UN ECOULEMENT
MAGNETOHYDRODYNAMIQUE A L'INTERIEUR D'UNE CONDUITE
HORIZONTALE, AVEC EFFET DE CONVECTION NATURELLE ET
GRADIENT AXIAL DE TEMPERATURE

Résumeé—-Des études de I'écoulement d’un fluide chaud et électriquement conducteur, dans un canal
horizontal rectangulaire avec un champ magnétique transversal et un transfert thermique par
rayonnement, sont étendues pour prendre en compte ces deux effets. On considére une dépendance en loi
puissance du coefficient d’absorption en fonction de la température. Une comparaison avec les résultats
d’un coefficient d’absorption constant montre que les conséquences ne sont pas particulierement
marquées. Le second effet considéré est celui de influence des forces d’Archiméde et du transfert
thermique convectif quand les parois du canal sont chauffées differemment et non-uniformément. Dans ce
cas il y a une contribution significative aux profils qui sont considérablement distordus par rapport a
ceux qui correspondent a des températures de paroi uniformes.

Dans cette ¢étude, le gaz a une opacité générale pour le transfert radiatif et les parois ont une
conductivité électrique et une émissivité arbitraire. On prend aussi en compte la conduction thermique
moléculaire, la viscosité et la dissipation ohmique. On obtient quelques solutions exactes mais, en général,
les équations aux dérivées partielles sont intégrées numériquement et les résultats présentés

graphiquement.
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WARMETRANSPORT DURCH STRAHLUNG BEl HORIZONTALER
MAGNETOHYDRODYNAMISCHER KANALSTROMUNG MIT AUFTRIEBSEFFEKTEN
UND EINEM AXJALEN TEMPERATUR-GRADIENTEN

Zusammenfassung—Es wurden Stréomungsuntersuchungen an einem heiflen, elektrisch leitenden Fluid in
einem horizontalen Rechteck-Kanal in Anwesenheit eines quergerichteten Magnetfeldes und spiirbarem
Wiarmeubergang durch thermische Strahlung durchgefuhrt, und zwar mit dem Ziel, zwei Effekte
besonders zu untersuchen. Zum ersten wurde die Abhingigkeit des Absorptionsgrades von der
Temperatur in Form eines Potenzgesetzes betrachtet. Ein Vergleich mit den Ergebnissen fiir konstanten
Absorptionsgrad zeigt, daB dieser Einflul nicht besonders ausgeprigt ist. Der zweite der erwihnten
Effekte ist derjenige, der durch den Einflufl von Auftriebskriften und durch konvektiven Warmeiibergang
entsteht, wenn die Kanalwiinde nur teilweise und ungleichmaBig beheizt sind. In diesem Fall ergibt sich
ein wichtiger Einfluf auf die Feldprofile, die erheblich gestort sind gegeniiber denen bei gleichformigen
Wandtemperaturen. Bei allen Untersuchungen wurde angenommen, daf das Gas fur Strahlung
durchlissig ist und daBl die Winde beliebige elektrische Leitfihigkeit und beliebigen Emissionsgrad
besitzen. Molekulare Wirmeleitung, Viskositdt und Qhm'sche Dissipation sind simtlich in Betracht
gezogen worden, Fs wurden einige wenige exakte Losungen gewonnen, im allgemeinen aber wurden die
malgeblichen Differentialgleichungen numerisch integriert und die Ergebnisse grafisch aufgetragen.

JIYUUCTBIA TTEPEHOC TEIUIA B FOPU3OHTAJIBHOM
MATHUTOT'MAPOANHAMMYECKOM TOTOKE B KAHAJIE IMPH HAJTMYHU CHII
[IJIABYUECTU U AKCHAJIBHOI'O I'PAJJMEHTA TEMIIEPATYP

Aunnoraums — [1poBeAeHO HCC/IEOBAHHE TEUCHHA HATPETOll NCKTPONPOBOAHOMA XHIKOCTH B NPAMO-
YrOMbHOM TOPH3OHTATHEHOM KaHAJIC IPH HAJHMYHH NONECPEYHOTO MATHHWTHOIO NOJS H 3HAUHTENLHOTO
AY4HCTOTO TEIUIOBOTO TOTOKAa ¢ Y4éToM ABYX (akTopos. Bo-nepseiX, y4MThIBanach CTENEHHaA
3aBHCMMOCTL K0d(duunerra abGcopbumm ot Temneparypwl. CpaBHeHHe C PE3y/NbTaTaMH, MNONYHEH-
HbHIMH TIPH NOCTOAHHOM 3HAaueHMH Ko3d¢uumeHTa aGcopOUMHM, HE BHISBHIO KaKHX-IHOO 3aMETHBIX
oTnminit. Bo-BTOPBIX, YYHTHBANOCh BIAMSHAE CHI IUIABYYECTH H KOHBCKTHBHOTO TemjiooOMeHa NpH
Pa3nAYHON ¥ HEOHOPOIHOM! TEMIEPATYPe CTEHOK XKaHana. B 3Tom Cnyuae npoduaH NONA 3HAYMTENLHO
OT/IHYATHCH OT npodHiel npH OJHOPOAHONR TemnepaType cTeHOK. OOMM /LA BCEX IKCHEPHMEHTOB
6BUTIC JONYLIEHHE O HENPOHHIAEMOCTH Ta3a [UIR JIY4HCTOTO NOTOKA H NPOW3IBONBHOH IMEKTpOnpoOBOa-
HOCTH H W3/IyMaTeibHOM cnocoOHOCTH cTeHOK. B onmiTax YYMTHBAAaCh MOJEKYJNpHAA Temwio-
MPOBOHOCTL, BAIKOCTb M JUCCHUALMA JKoynepa Tenna. IMonydeHo HECKONBKO TOYHBIX DEILICHHIA,
OJIHAKO B OCHOBHOM NIPOBEJICHO YHC/IEHHOE HHTErPHPOBaHHe HHGMEPEHIHABPHBIX YPABHEHHH H PE3Yb-
TATHI IPEACTABJIEHH B BUJE IPadHKOB.



